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Abstract 

 How to calculate induced magnetic field of ferromagnetic objects is one of the most 

important question in ship degaussing. Based on the surface integral equation of ferromagnetic 

objects’ induced magnetic field, the scalar potential numeric calculation model is established and 

the desingularized analysis solution is deduced out to solve the singularity problem in this model. 

Then, the calculation process to fix the induced magnetic field of ferromagnetic object with this 

model is elaborated. Finally, a magnetic-field measurement experiment for a hollow cylinder is 

designed and the result shows that the method is highly efficient. 
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1. Introduction 

As the ferromagnetic hull object placed in the earth’s magnetic field, the ship may get a 

magnetization which creates a local anomaly of the field and makes the ship vulnerable to 

detection and mines. To protect naval vessels from the magnetically actuated mines and 

surveillance systems, marines worldwide are looking for the methods to reduce magnetic 

anomaly for decades. Obviously, an important precondition for the implementation of the above 

magnetic protection technique is to evaluate the magnetic field of the naval vessels. Therefore, as 

a basic task in magnetic protection technique, the numeric calculation modeling technique for 

ship magnetic field directly decides the level of the ship magnetic protection technique to some 

extent.  
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The magnetization of ferromagnetic objects can be divided in two parts: the induced 

magnetization and the remnant magnetization. Currently, the finite-element method (FEM) and 

the integral equation method are the most conventional methods to forecast the vessels’ induced 

magnetic field. FEM could be used to solve the Laplacian equation with the induced magnetic 

field’s scalar potential. However, the major drawback of FEM is to set boundary condition and 

divide a lager region to the discrete elements of huge quantity that makes the calculation very 

large [1, 2]. On the other hand, with the integral equation method, only the region of vessel 

should be divided that makes the elements number and the calculation decrease greatly [3-8]. 

Meanwhile, to accelerate the solving algorithm, several approaches have been developed to solve 

the volume integral equation, for example, the conjugate-gradient fast Fourier transform (CG-

FFT) algorithms and the Fast Multi-pole Method (FMM) [9-13]. 

According to the surface integral equation of ferromagnetic objects’ induced magnetic field, 

the scalar potential numeric calculation model is established and the de-singularized analysis 

solution is deduced out to solve the singularity problem in this model. Then, the calculation 

process to fix the induced magnetic field of ferromagnetic object with this model is elaborated. 

Finally, a magnetic-field measurement experiment for a hollow cylinder is designed and the result 

shows that the induced magnetic field of ferromagnetic objects can be calculated efficiently and 

accurately with the method proposed in this paper. 

 

2. The scalar magnetic potential model with element surface integral equation 

As is showed in Fig. 1, V  is the volume of ferromagnetic object, S is the surface, r  is 

the field point radius vector, r is the source radius point vector and M is the intensity of 

magnetization. 

 

 

Fig.1. The magnetization model for ferromagnetic objects 
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When there is no free current in this region, the scalar magnetic potential of the magnetized 

ferromagnetic object is as follow [4-8]. 
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Naturally, as a uniform magnetized object, 
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Equation (1) can be simplified to 
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Generally， it is impossible for the irregular ferromagnetic object to be magnetized 

uniformly in external magnetic field. If the ferromagnetic object is divided to n little elements, 

the every single dissection element can be taken as a uniform magnetized object when the volume 

of the discrete dissection element is small enough and the induced potential can be given by 
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3. The numerical calculation method of coupling factor based on irregular 

hexahedron element 

On behalf of the easy to calculate the coupling factor based on regular element, and also, the 

commonality to dissect the complex objects with the irregular hexahedron element, we will 

research the numerical calculation method of coupling factor based on irregular hexahedral 

element. 

 

 

Fig.2. The irregular hexahedral element 

 

We can get nodes’ data of every irregular hexahedral element after the dissection of 

ferromagnetic region. As usual, take the irregular hexahedral element as the research object 

showed in Fig.2. 

Thanks to (6), the scalar magnetic potential on P produced by the j-th irregular hexahedral 

element can be given by 
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Then, the scalar magnetic potential on P produced by the ferromagnetic region can be 

calculated by 
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Inside each element, the scalar potential is approximated by linear function 

 

1 2 3 4( , , ) (1, , , ) ( , , , )Tx y z x y z k k k k                                                 (9) 

 

Substitute the scalar magnetic potentials and coordinate values of the irregular hexahedral 

element’s eight nodes to (9), we can get a linear system of equations as follows 
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Solve the equations, we can get  

 

1K C                                                                    (11) 

 

Thanks to the uniform magnetization in the irregular hexahedral element,  
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As a consequence, the scalar magnetic potential at node j is 
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Thanks to (13), the key to calculate the coupling factor matrix based on the data of irregular 

hexahedral element’s nodes is to solve this surface integral as follows 
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Where is  (i=1, 2, …, 6) is the i-th surface of the element. Given the difficulty to get the 

original function in the form expressed by primary functions, the numerical method is applied to 

calculated (14). Because of the variable of shapes and coordinates in different dissection schemes, 

it is difficult to calculate the surface integral in the global coordinate system. Then, we create a 

local coordinate system A-XYZ as is showed in Fig. 3, (14) can be turned to 
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Where 2 2 2

0 0 0( , ) 1/ ( ) ( )F x y x x y y z     . ( , )x y  and 0 0 0( , , )x y z are the coordinates 

of the source point Q and the field point P. 

 

 

Fig.3. The local coordinate system of the i-th surface in the irregular hexahedral element 

 

As is showed in Fig.4, A-XYZ is the local coordinate system of the i-th surface in the 

element and o-xyz is the global coordinate system. 
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Fig.4. The relation between the local and global coordinate systems of the i-th surface  

The rotation matrix R from the global coordinate system to the local coordinate system is 

given by 
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Where, UV
 is the included angle between the axis U of local coordinate system and the 

axis V of global coordinate system and they can be set to x, y or z. Then, the field point 

coordinate in the local coordinate system can be calculated by 

 

0( )P P P   R                                                              (17) 

 

Where 0P  is the coordinate of A. 

In the local coordinate system, (15) can be calculated in four regions as is showed in Fig.5. 
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Fig.5. The integral region in the local coordinate system 

 

Obviously, there will be a singularity of r in the integral when P and A is coincided. We can 

eliminate the singularity by adopting the polar integral. Thanks to the polar integral, (15) can be 

turned to  
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With Mathematical, its analytic expression could be deduced as follows 
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We can get the analytic expression of 
ABCS

drd  by substituting ,( )d dx y  with ( )b bx y  in 

(19) 

Equation (13) is written at each node of the dissection to obtain a linear system as follows 
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0-S                                                                 (20) 

 

Where 0
 is the vector which is composed with the scalar magnetic potential on each node 

produced by the external magnetic field and   is the total potential vector and S is the coupling 

factor matrix. The total potential at each node is obtained by solving the linear system (20). 

The total field at any point r0 is calculated thanks to 
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4.  Calculation Example Based on Experimental Near Field 

4.1 Experiment planning 

A magnetic measurement experiment for a hollow cylinder with two capped terminals is 

designed to prove the effectiveness of the numerical calculation method. The cylinder’s detailed 

size and the planning of the experiment are shown in Fig.6. The geomagnetic field B0 in 

experiment region is 34500nT. 

 

 

Fig.6. The cylinder’s detailed size and the planning of the experiment 

 

The accuracy of the magnetic-field measurement system is 1nT. The cylinder is fixed on the 

non-magnetic trolley and the trolley’s moving is constrained along the north and south direction 
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on the non-magnetic rail while the sensors array is fixed on the rail. The measurement field point 

is below the center keel of the cylinder. The longitudinal distance between two field points is 

100mm and the total measured distance is 4400mm. The horizontal distance between two 

magnetic sensors is 250mm. The vertical component of the cylinder’s magnetic field intensity on 

the magnetic north and south is measured and their half of difference is the vertical component of 

the cylinder’s induced magnetic field intensity. 

 

4.2 The experiment’s calculation process and the analysis of the results 

With comprehensively considering of the time and accuracy of calculation, we dissect the 

cylinder to 816 hexahedral elements to calculate the induced magnetic field of the cylinder 

(Include the first part of 268 elements with the magnetic susceptibility of 257 and the second part 

of 548 elements with the magnetic susceptibility of 238).  

 

Fig.7. The discrete dissect of the ferromagnetic cylinder 

Fig.7 shows the comparison curves of the measured and calculated values of the cylinder’s 

vertical component of induced magnetic field intensity.  
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Fig.8. The comparison between the calculated and the measured values of the induced 

magnetic field on the measured points 

 

As is shown in Fig.8, the measured and calculated values are corresponded perfectly and the 

MSE between them is only 216.3 and the biggest relative error is 4.92％. The experiment results 

show that the numerical calculation method based on the scar potential integral equation is of 

high accuracy. 

The model errors are produced by three parts as follows. 

The error caused by the dissection error. Theoretically, the every single dissection element 

can be taken as a uniform magnetized object only when the volume of the discrete dissection 

element is infinitely small. However, the calculation will be impossible to be carried out by the 

infinite number of elements. Therefore, the elements’ number should be reduced under the 

premise of the calculation accuracy. 

The measured error contains the inherent magnetic probe error, the manual operation error 

and the measured errors caused by the environment. 

The error caused by the linear approximation of scalar potential in the irregular hexahedral 

element. 
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Discussion 

The proposed model is established based on the scalar potential integral equation, which has 

the advantages of a small amount of computation, low complexity and low memory occupation. 

What's more, the singularity problem in the model can be solved perfectly by the de- singularized 

analysis solution proposed in this paper. The proposed method will have an significant value in 

induced magnetic field calculation. 

 

Conclusion 

A method to calculate the scalar magnetic potential of ferromagnetic objects based on the 

surface integral equation is proposed in this paper. Firstly, the scalar potential numeric 

calculation model is established based on the element surface integral method. Secondly, With 

respect to the singularity problem in this model, the de-singularized analysis solution is deduced 

out. Finally, a magnetic-field measurement experiment of a hollow cylinder with two capped 

terminals is done, and the measured and calculation values are in good coincidence that proves 

the effectiveness of the method proposed in this paper. 
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